Structured Pseudospectra for Polynomial Eigenvalue Problems, with Applications

نویسندگان
چکیده

برای دانلود باید عضویت طلایی داشته باشید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Structured Pseudospectra for Polynomial Eigenvalue Problems, with Applications

Pseudospectra associated with the standard and generalized eigenvalue problems have been widely investigated in recent years. We extend the usual definitions in two respects, by treating the polynomial eigenvalue problem and by allowing structured perturbations of a type arising in control theory. We explore connections between structured pseudospectra, structured backward errors, and structure...

متن کامل

Backward errors and pseudospectra for structured nonlinear eigenvalue problems

Minimal structured perturbations are constructed such that an approximate eigenpair of a nonlinear eigenvalue problem in homogeneous form is an exact eigenpair of an appropriately perturbed nonlinear matrix function. Structured and unstructured backward errors are compared. These results extend previous results for (structured) matrix polynomials to more general functions. Structured and unstru...

متن کامل

More on pseudospectra for polynomial eigenvalue problems and applications in control theory

Definitions and characterizations of pseudospectra are given for rectangular matrix polynomials expressed in homogeneous form: P(α, β) = αAd + αd−1βAd−1 + · · · + βA0. It is shown that problems with infinite (pseudo)eigenvalues are elegantly treated in this framework. For such problems stereographic projection onto the Riemann sphere is shown to provide a convenient way to visualize pseudospect...

متن کامل

Structured Backward Error Analysis of Linearized Structured Polynomial Eigenvalue Problems

We start by introducing a new class of structured matrix polynomials, namely, the class of MA-structured matrix polynomials, to provide a common framework for many classes of structured matrix polynomials that are important in applications: the classes of (skew-)symmetric, (anti-)palindromic, and alternating matrix polynomials. Then, we introduce the families of MAstructured strong block minima...

متن کامل

Structured backward error for palindromic polynomial eigenvalue problems

A detailed structured backward error analysis for four kinds of Palindromic Polynomial Eigenvalue Problems (PPEP) ( d ∑ l=0 Alλ l ) x = 0, Ad−l = εA ⋆ l for l = 0, 1, . . . , ⌊d/2⌋, where ⋆ is one of the two actions: transpose and conjugate transpose, and ε ∈ {±1}. Each of them has its application background with the case ⋆ taking transpose and ε = 1 attracting a great deal of attention lately ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: SIAM Journal on Matrix Analysis and Applications

سال: 2001

ISSN: 0895-4798,1095-7162

DOI: 10.1137/s0895479800371451